REINFORCEMENT LEARNING

A playful machine learning

Avneet Kaur PhD Applied Mathematics Email: a93kaur@uwaterloo.ca

GUESS THE ANIMAL

QUOLL

WHAT IS MACHINE LEARNING?

• machines learn to do a given task without being explicitly programmed.

Supervised learning

- Labelled dataset
- Learn f to map y=f(x)
- Classification, Regression

Unsupervised learning

- Unlabelled dataset
- Learn underlying structure
- Clustering, Dimensionality reduction

Reinforcement learning

- Generate dataset
- Maximize utility by learning to interact
- Robot navigation, learning games

TRANSLATE THESE WORDS

• Nez (French)

• ਕੰਨ (Punjabi)

KEY TAKEAWAYS

- You were rewarded for each type of answer.
- You as an agent interacted with the environment to translate better.
- Environment gave feedback in the form of rewards.

SUDOKU

5			4	6	7	3		9
9		3	8	1		4	2	7
1	7	4	2		3			
2	3	1	9	7	6	8	5	4
8	5	7	1	2	4		9	
4	9	6	3		8	1	7	2
				8	9	2	6	
7	8	2	6	4	1			5
	1					7		8

Task: Fill the missing squares in as less time as possible.

- Agent makes a sequence of moves (actions)
- Each move by the agent decides which subsequent squares can be filled next

9	7		4		2		5	8
	2		5	9	7	6		
3	4		8		1	2		7
7	5	3	6	4	8	9	1	2
6	1	9	7	2	5	8	4	3
4	8	2	9	1	3		6	
	3	4	1	7	6		2	
	6	7	3	5	9		8	1
5	9	1	2	8	4		7	
9	7		4		2		5	8
	2		5	9	7	6		
3	4		8		1	2		7
7	5	3	6	4	8	9	1	
6	1	9	7	2	5	8	4	3
4	8	2	9	1	3		6	
	3	4	1	7	6		2	
		7	3	5	9		8	1
5	9	1	2	8	4		7	
9	7		4		2		5	8
	2		5	9	7	6		
3	4		8		1	2		7
7		3	6	4	8	9	1	
6	1	9	7	2	5	8	4	3
4	8	2	9	1	3		6	
	3	4	1	7	6		2	
		7	3	5	9		8	1
5	9	1	2	8	4		7	
9	7		1		2		5	3
	2		5	9	7	5		
3	1		3 !	9		? (
3	4		8		1	2		7
7		3	6	4	8	9	1	
6	1		7	2	5	8	4	
4	8	2	9	1	3		6	
	3	4	1	7	6		2	
		7	3	5	9		8	1
5	9	1	2	8	4		7	

- Reaching the goal state will have a reward
- Intermediate squares may or may not have reward

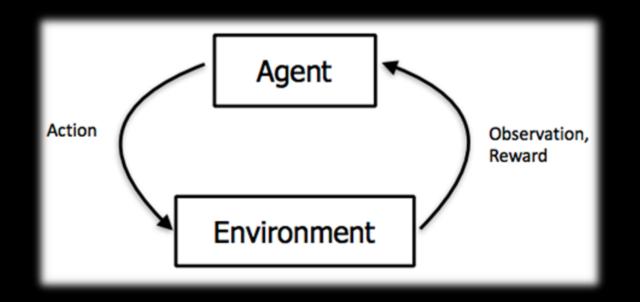
	7		4	8	2	1	9	5
1	8		9	5	3	7	6	
	2		6	7	1	4	3	
	6	7	3	1	9	2	8	4
3	4	8	5	2	7	9	1	6
2	1	9	8	4	6	3	5	7
7		2	1		8		4	3
		6	7	9	5		2	
8	5		2		4		7	9

An intermediate state

5	2	8	4	6	7	3	1	9
9	6	3	8	1	5	4	2	7
1	7	4	2	9	3	5	8	6
2	3	1	9	7	6	8		4
8	5		1			6	9	3
4	9	6	3	5	8	1	7	2
3	4	5	7	8	9	2	6	1
7	8	2	6		1	9	3	1 5
6	1	9	5	3	2	7	4	8

Goal state

RL FRAMEWORK



INVENTORY CONTROL EXAMPLE

- Observation: Stock level
- Action: What to purchase
- Reward: Profit

ENVIRONMENT

- An external system that an agent can perceive and act on
- Receives action from agent and in response emits appropriate reward and (next) observation

AGENT

- A system that takes actions to change the state of the environment (Decision maker)
- Executes action upon receiving observation
- For taking an action the agent receives an appropriate reward

STATE

- State can be viewed as a summary or an abstraction of the history of the system
- For example, in Sudoku, the state could be raw image or vector representation of the board

REWARD

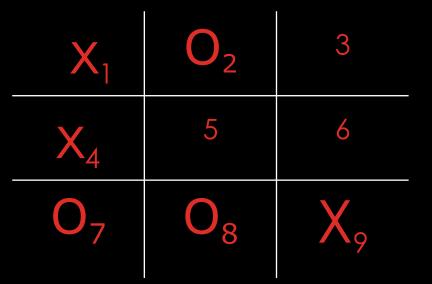
- Reward is a scalar feedback signal
- Indicates how well agent acted at a certain time
- The agent's aim is to maximise cumulative reward

COMPONENTS OF AN RL AGENT

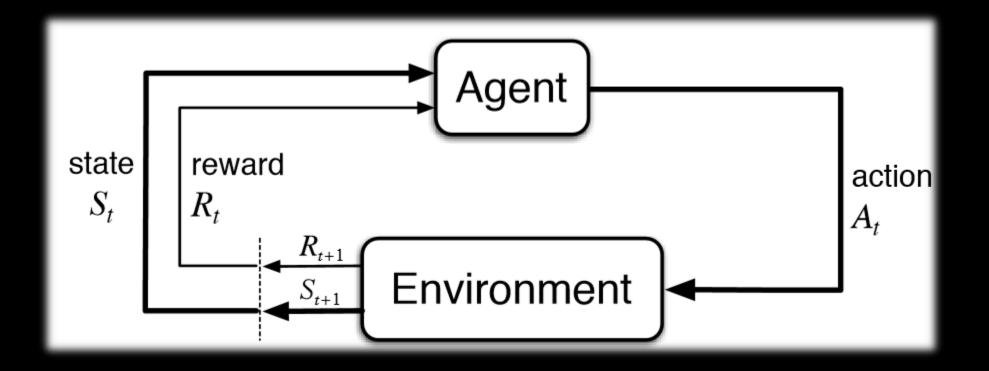
- **Policy:** agent's behaviour function; π : S \rightarrow A
- Value function: evaluates how good is each state and/or action. Therefore, it is used to choose appropriate action among the available options.
- **Model:** agent's representation of the environment; Mainly contains state transition information and reward function.

TIC TAC TOE

- Observation: Board position
- Action: Moves
- **Reward:** Win or loss
- Policy: Agent has multiple empty squares to choose
 - Random policy is to place 'X' in any one of empty squares randomly
 - Better policy is to place 'X' in square 5
- Value Function: Agent may have an estimate about the value of being in a certain board configuration
- **Model:** Model of transition probabilities between states

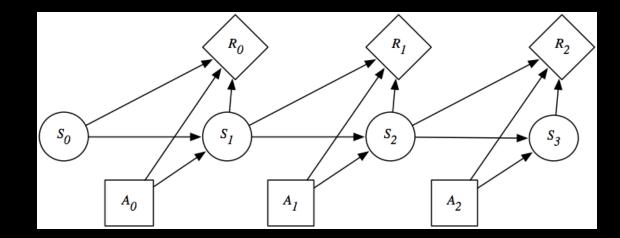


FRAMEWORK



MARKOV DECISION PROCESS

- Provides a mathematical framework for modelling decision making process
- Can formally describe the working of the environment and the agent
- Core problem in solving an MDP is to find an 'optimal' policy (or behaviour) for the decision maker (agent) to maximize the total future reward



RANDOM VARIABLE

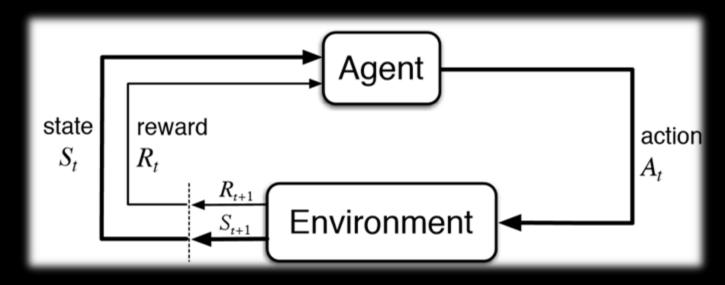
- A random variable X denotes the outcome of a random phenomenon
- Examples include outcome of a coin toss and the roll of a dice.

STOCHASTIC PROCESS

- It is a collection of random variables indexed by some mathematical set T.
- T has the interpretation of time and is typically, $\mathbb N$ or $\mathbb R.$ Assume T=N for our sessions.
- Notation: ${X_t}_{t \in T}$

MARKOV PROPERTY

- A stochastic process $\{S_t\}_{t\in T}$ is said to have Markov property if for any state $s_{t, P}(S_{t+1} | S_t) = P(S_{t+1} | S_1, S_2, ..., S_t)$.
- St captures all relevant information from history and is a sufficient statistic of the future.
- Memoryless property



STATE TRANSITION PROBABILITY

- For a stochastic process $\{S_t\}_{t\in T}$, the state transition probability for successive states s and s' is denoted by

$$\mathscr{P}_{SS'} = \mathsf{P}(\mathsf{S}_{t+1} = \mathsf{S}' \mid \mathsf{S}_t = \mathsf{S}).$$

• State transition matrix \mathcal{P} then denotes the transition probabilities from all states s to all successor states s' (with each row summing to 1.

$$\mathcal{F} = \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} & \dots & \mathcal{F}_{1n} \\ \cdot & & & & \\ \cdot & & & & \\ \mathcal{F}_{n1} & \mathcal{F}_{n2} & \dots & \mathcal{F}_{nn} \end{pmatrix}$$

- A stochastic process {s_t}_{t∈T} is a Markov Chain if it satisfies Markov property.
- It is represented by the tuple < 3, \$\mathcal{I}\$ > where \$3\$ denotes the set of states.
- It is also called Markov process.

MARKOV CHAIN

$P[S_{t+1}|S_t] = P[S_{t+1}|S_1, \dots, S_t]$

MARKOV REWARD PROCESS

A Markov reward process is a tuple $<\mathfrak{T}, \mathfrak{F}, \mathfrak{F}, \gamma > is$ a Markov chain with values

- 3: Finite set of states
- \mathcal{P} . State transition probability
- A: Reward for being in state s_t is given by a deterministic function ${\bf K}$

$$r_{\dagger+1} = \mathscr{K}(s_{\dagger})$$

• γ : Discount factor such that $\gamma \in [0,1]$

WHY DISCOUNTING?

- Offers trade off between 'myopic' and 'far sighted' rewards
- Avoids infinite returns in cyclic and infinite horizon Markov processes
- Undiscounted Markov reward process are mostly used when sequences terminate.

TOTAL DISCOUNTED REWARD

Total discounted reward from time step t is, $\sum_{k=0}^{\infty} (\gamma^k r_{t+k+1})$

- $\gamma \rightarrow 0$ (myopic); $\gamma \rightarrow 1$ (far-sighted)
- Value of reward r after k+1 timesteps is γ^{k} r.

STATE-VALUE FUNCTION

Value function V(s) denotes the long-term value of state s,

$$V(s) = \mathbb{E}(G_t | s_t = s) = \mathbb{E}(\sum_{k=0}^{k} \gamma^k r_{t+k+1} | s_t = s)$$

and is independent of time, t.

RECURSIVE FORMULATION OF VALUE FUNCTION

$$\begin{split} f(s) &= \mathbb{E}(G_t | s_t = s) = \mathbb{E}(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s) \\ &= \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s) \\ &= \mathbb{E}(r_{t+1} | s_t = s) + \gamma \mathbb{E}(G_{t+1} | s_t = s) \\ &= \mathbb{E}(r_{t+1} | s_t = s) + \gamma \mathbb{E}(\mathbb{E}(G_{t+1} | s_t = s) | s_t = s) \\ &= \mathbb{E}(r_{t+1} | s_t = s) + \gamma \mathbb{E}(V(s_{t+1}) | s_t = s) \\ &= \mathbb{E}(r_{t+1} + \gamma V(s_{t+1}) | s_t = s) \end{split}$$

BELLMAN EQUATION FOR MRP

• For $s' \in \mathfrak{S}$, a successor state of s with transition probability $\mathcal{P}_{ss'}$, we can rewrite V(s) as

$$V(s) = \mathbb{E}(r_{t+1}) + \gamma \sum_{s' \in \mathfrak{S}} \mathscr{P}_{ss'} V(s').$$

• This is the Bellman equation for value functions

MATRIX FORM

• Let $\Im=\{1,2,\dots,n\}$ and \mathscr{P} be known. Then, $V=\mathscr{K}+\gamma\mathscr{P}V$

where

$$\begin{bmatrix} V(1) \\ V(2) \\ \vdots \\ V(n) \end{bmatrix} = \begin{bmatrix} \mathfrak{K}(1) \\ \mathfrak{K}(2) \\ \vdots \\ \mathfrak{K}(2) \\ \vdots \\ \mathfrak{K}(n) \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \cdots & \mathcal{P}_{1n} \\ \mathcal{P}_{21} & \cdots & \mathcal{P}_{2n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix} \times \begin{bmatrix} V(1) \\ V(2) \\ \vdots \\ V(n) \end{bmatrix}.$$

Solving for V, we get,

$$V = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

ABSORBING STATE

• A state $i \in \mathfrak{I}$ is said to be absorbing if it is impossible to leave that state, Mathematically,

$$P_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

• In a game of snake and ladders, the state '100' is an absorbing state.

MARKOV DECISION PROCESS

MDP is a tuple $<\mathfrak{F}, \mathfrak{F}, \mathfrak{P}, \mathfrak{K}, \gamma >$ where

- 3: Finite set of states
- A: Finite set of actions
- P. State transition probability

$$\mathcal{P}^{a}_{ss'} = \mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a), a_t \in A$$

• \Re : Reward for taking action a_t at state s_t and transitioning to state s_{t+1} is given by the deterministic function \Re

$$r_{t+1} = \Re(s_t, a_t, s_{t+1}).$$

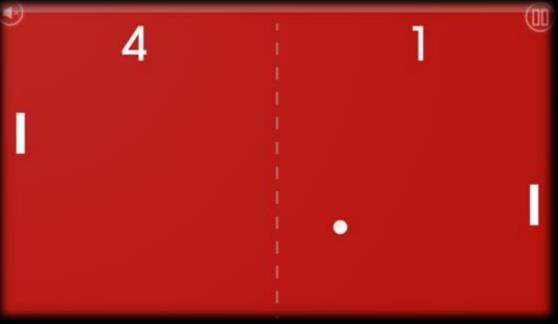
• γ : Discount factor such that $\gamma \in [0,1]$

SNAKE AND LADDERS

States: Each square from 1 to 100 Actions: Move right, climb ladders, or come down snakes depending on the number on the die throw Rewards: -1 for every move made until reaching '100'

ATARI-PONG GAME

- States: Possible set of all images Actions: Paddle up or down Rewards:
- +1 for making the opponent miss the ball,-1 if the agent misses the ball,0 otherwise.

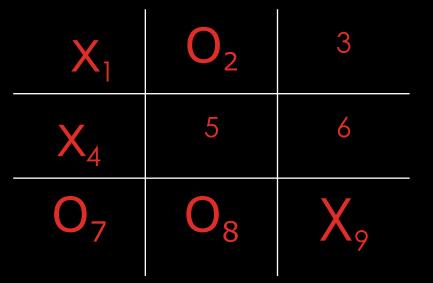


POLICY

- Let π denote a policy that maps state space \Im to action space \mathcal{A} . There are 2 types of policies:
- Deterministic policy: $a=\pi(s)$, $s\in \mathcal{S}$, $a\in \mathcal{A}$.
- Stochastic policy: $\pi(a | s) = P[a_t = a | s_t = s]$

TIC TAC TOE REVISITED

- **Deterministic Policy:** Place 'X' in square 5
- Stochastic policy: Place 'X' in square 5 with probability 0.8 and place 'X' in square 6 with probability 0.2

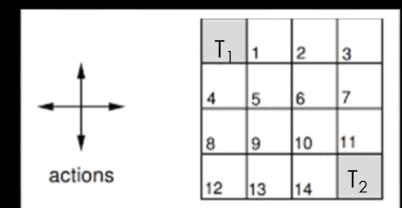


NAVIGATION GRID

- States: {1,2,...,14, T₁, T₂}
- Actions: {right, left, up, down}
- Deterministic Policy:

 $\pi(s) = \begin{cases} down, & s = \{3,7,11\} \\ right, & otherwise \end{cases}$

- Example sequences: {{12,13,14,T₂}, {4,5,6,7,11,T₂}}
- Stochastic Policy: $\pi(a|s)$ could be a uniform random action between all possible actions at state s
- Example sequences: {{4,5,9,8,12,...},{1,2,6,5,1,2,3,...}}



TIME FOR PROBLEM SETS